Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Genomics ; 51(2): 208-221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157933

RESUMO

Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.


Assuntos
Células Fotorreceptoras de Vertebrados , Degeneração Retiniana , Animais , Humanos , Camundongos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , RNA Helicases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
FEBS J ; 290(17): 4356-4370, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098815

RESUMO

The endoplasmic reticulum membrane protein complex (EMC) plays a critical role in the synthesis of multipass membrane proteins. Genetic studies indicated that mutations in EMC1 gene were associated with retinal degeneration diseases; however, the role of EMC1 in photoreceptor has not been confirmed. Here, we show that Emc1 ablation in the photoreceptor cells of mice recapitulated the retinitis pigmentosa phenotypes, including an attenuated scotopic electroretinogram response and the progressive degeneration of rod cells and cone cells. Histopathological examination of tissues from rod-specific Emc1 knockout mice revealed mislocalized rhodopsin and irregularly arranged cone cells at the age of 2 months. Further immunoblotting analysis revealed decreased levels of membrane proteins and endoplasmic reticulum chaperones in 1-month-old rod-specific Emc1 knockout mice retinae, and this led us to speculate that the loss of membrane proteins is the main cause of the degeneration of photoreceptors. EMC1 most likely regulated the membrane protein levels at an earlier step in the biosynthetic process before the proteins translocated into the endoplasmic reticulum. The present study demonstrates the essential roles of Emc1 in photoreceptor cells, and reveals the mechanism through which EMC1 mutations are linked to retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Camundongos , Modelos Animais de Doenças , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
3.
BMC Biol ; 20(1): 140, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698136

RESUMO

BACKGROUND: As the most abundant epigenetic modification of eukaryotic mRNA, N6-methyladenosine (m6A) modification has been shown to play a role in mammalian nervous system development and function by regulating mRNA synthesis and degeneration. However, the role of m6A modification in retinal photoreceptors remains unknown. RESULTS: We generated the first retina-specific Mettl14-knockout mouse models using the Rho-Cre and HRGP-Cre lines and investigated the functions of Mettl14 in retinal rod and cone photoreceptors. Our data showed that loss of Mettl14 in rod cells causes a weakened scotopic photoresponse and rod degeneration. Further study revealed the ectopic accumulation of multiple outer segment (OS) proteins in the inner segment (IS). Deficiency of Mettl14 in cone cells led to the mislocalization of cone opsin proteins and the progressive death of cone cells. Moreover, Mettl14 depletion resulted in drastic decreases in METTL3/WTAP levels and reduced m6A methylation levels. Mechanistically, transcriptomic analyses in combination with MeRIP-seq illustrated that m6A depletion via inactivation of Mettl14 resulted in reduced expression levels of multiple phototransduction- and cilium-associated genes, which subsequently led to compromised ciliogenesis and impaired synthesis and transport of OS-residing proteins in rod cells. CONCLUSIONS: Our data demonstrate that Mettl14 plays an important role in regulating phototransduction and ciliogenesis events and is essential for photoreceptor function and survival, highlighting the importance of m6A modification in visual function.


Assuntos
Metiltransferases/metabolismo , Células Fotorreceptoras de Vertebrados , Retina , Animais , Mamíferos/genética , Metilação , Metiltransferases/genética , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones
4.
J Cell Physiol ; 237(6): 2673-2689, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533255

RESUMO

Yes-associated protein (YAP) is a major component of the Hippo pathway involved in development, growth, repair and homeostasis. Nonsense YAP1 mutations in humans result in autosomal dominant coloboma. Here, we generated a conditional knockout mouse model in which Yap1 was specifically deleted in embryonic retinal progenitor cells (RPCs) and in mature Müller cells using a Chx10-Cre driver. Our data demonstrated that the conditional ablation of Yap1 in embryonic RPCs does not prevent normal retinal development and caused no gross changes in retinal structure during embryonic and early postnatal life. Nevertheless, Yap1 deficient in retinal Müller cells in adult mice leads to impaired visual responses and extensive late-onset retinal degeneration, characterized by reduced cell number in all retinal layers. Immunofluorescence data further revealed the degeneration and death of rod and cone photoreceptors, bipolar cells, horizontal cells, amacrine cells and ganglion cells to varying degrees in aged knockout mice. Moreover, alteration of glial homeostasis and reactive gliosis were also observed. Finally, cell proliferation and TUNEL assay revealed that the broad retinal degeneration is mainly caused by enhanced apoptosis in late period. Together, this work uncovers that YAP is essential for the normal vision and retinal maintenance, highlighting the crucial role of YAP in retinal function and homeostasis.


Assuntos
Degeneração Retiniana , Proteínas de Sinalização YAP/metabolismo , Animais , Células Ependimogliais/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética
5.
J Genet Genomics ; 49(9): 847-858, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35304325

RESUMO

N6-methyladenosine (m6A) modification, which is achieved by the METTL3/METTL14/WTAP methyltransferase complex, is the most abundant internal mRNA modification. Although recent evidence indicates that m6A can regulate neurodevelopment as well as synaptic function, the roles of m6A modification in the cerebellum and related synaptic connections are not well established. Here, we report that Purkinje cell (PC)-specific WTAP knockout mice display early-onset ataxia concomitant with cerebellar atrophy due to extensive PC degeneration and apoptotic cell death. Loss of Wtap also causes the aberrant degradation of multiple PC synapses. WTAP depletion leads to decreased expression levels of METTL3/14 and reduced m6A methylation in PCs. Moreover, the expression of GFAP and NF-L in the degenerating cerebellum is increased, suggesting severe neuronal injuries. In conclusion, this study demonstrates the critical role of WTAP-mediated m6A modification in cerebellar PCs, thus providing unique insights related to neurodegenerative disorders.


Assuntos
Ataxia Cerebelar , Células de Purkinje , Animais , Ataxia Cerebelar/genética , Metilação , Metiltransferases/genética , Camundongos , Camundongos Knockout , Células de Purkinje/metabolismo , RNA Mensageiro/genética
6.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35146515

RESUMO

Precise Norrin and ß-catenin (Norrin/ß-catenin; encoded by NDP and CTNNB1, respectively) signaling is critical for proper angiogenesis. Dysregulation of this signaling leads to various diseases, of which retinal exudative vitreoretinopathy is the most prevalent. Here, we used a global knockout mouse model to show that limb development membrane protein 1 like (LMBR1L), a transmembrane protein of unknown function in angiogenesis, is essential for retinal vascular development. In vitro experiments revealed that LMBR1L depletion results in aberrant activation of the Norrin/ß-catenin signaling pathway via decreased ubiquitylation of FZD4 and increased Norrin co-receptor LRP5 and p-GSK3ß-Ser9 expression levels, which cause accumulation of ß-catenin. Moreover, inhibition of LMBR1L in human retinal microvascular endothelial cells (HRECs) caused increased proliferation ability and defective cell migration, which might have occurred as a result of upregulated expression levels of the apical junction components. Treatment with p-GSK3ß-Ser9 inhibitor AR-A014418 restored the phenotypes in LMBR1L-null HRECs, which further demonstrated the important regulatory role of LMBR1L in the Norrin/ß-catenin signaling pathway. Taken together, our data reveal an essential role for LMBR1L in angiogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células Endoteliais , Receptores de Superfície Celular/metabolismo , beta Catenina , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética , beta Catenina/metabolismo
7.
Mol Ther ; 30(6): 2342-2353, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192934

RESUMO

Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N6-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Fibrose , Lipogênese/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/genética
8.
Zool Res ; 43(1): 64-74, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34845879

RESUMO

Retinal angiogenesis is a critical process for normal retinal function. However, uncontrolled angiogenesis can lead to pathological neovascularization (NV), which is closely related to most irreversible blindness-causing retinal diseases. Understanding the molecular basis behind pathological NV is important for the treatment of related diseases. Twist-related protein 1 (TWIST1) is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition (EMT) in many human cancers. Our previous study showed that Twist1 expression is elevated in pathological retinal NV. To date, however, the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated. To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV, we generated an inducible vascular endothelial cell (EC)-specific Twist1 transgenic mouse model ( Tg-Twist1 iEC+ ). Whole-mount retinas from Tg-Twist1 iEC+ mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature, as well as aneurysm-like pathological retinal NV. Furthermore, overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity, thus leading to uncontrolled retinal angiogenesis. TWIST1 promoted pathological NV by activating the Wnt/ß-catenin signaling pathway and inducing the expression of NV formation-related genes, thereby acting as a 'valve' in the regulation of pathological angiogenesis. This study identified the critical role of TWIST1 in retinal pathological NV, thus providing a potential therapeutic target for pathological NV.


Assuntos
Neovascularização Patológica , Neovascularização Retiniana , Doenças dos Roedores , Animais , Células Endoteliais , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Neovascularização Patológica/veterinária , Neovascularização Retiniana/genética , Neovascularização Retiniana/veterinária , Proteína 1 Relacionada a Twist/genética
10.
Cell Death Dis ; 12(11): 1017, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716303

RESUMO

Glaucoma is a leading cause of blindness, affecting 70 million people worldwide. Owing to the similarity in anatomy and physiology between human and mouse eyes and the ability to genetically manipulate mice, mouse models are an invaluable resource for studying mechanisms underlying disease phenotypes and for developing therapeutic strategies. Here, we report the discovery of a new mouse model of early-onset glaucoma that bears a transversion substitution c. G344T, which results in a missense mutation, p. R115L in PITX2. The mutation causes an elevation in intraocular pressure (IOP) and progressive death of retinal ganglion cells (RGC). These ocular phenotypes recapitulate features of pathologies observed in human glaucoma. Increased oxidative stress was evident in the inner retina. We demonstrate that the mutant PITX2 protein was not capable of binding to Nuclear factor-like 2 (NRF2), which regulates Pitx2 expression and nuclear localization, and to YAP1, which is necessary for co-initiation of transcription of downstream targets. PITX2-mediated transcription of several antioxidant genes were also impaired. Treatment with N-Acetyl-L-cysteine exerted a profound neuroprotective effect on glaucoma-associated neuropathies, presumably through inhibition of oxidative stress. Our study demonstrates that a disruption of PITX2 leads to glaucoma optic pathogenesis and provides a novel early-onset glaucoma model that will enable elucidation of mechanisms underlying the disease as well as to serve as a resource to test new therapeutic strategies.


Assuntos
Glaucoma/genética , Glaucoma/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Apoptose/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Células Ganglionares da Retina/metabolismo , Transfecção
11.
Zool Res ; 42(5): 650-659, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472226

RESUMO

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The ß subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null ( mdx) mice and BaCl 2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl 2-injection. Compared to the control mice, the cKO mice showed decreased Pax7 + and MYH3 + SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proliferação de Células , Distrofina/genética , Distrofina/metabolismo , Antagonistas de Estrogênios/toxicidade , Regulação da Expressão Gênica/fisiologia , Genótipo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/genética , Tamoxifeno/toxicidade
12.
Dis Model Mech ; 14(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080006

RESUMO

The asymmetric distribution of phosphatidylserine (PS) in the cytoplasmic leaflet of eukaryotic cell plasma membranes is regulated by a group of P4-ATPases (named PS flippases) and the ß-subunit TMEM30A. Podocytes in the glomerulus form a filtration barrier to prevent the traversing of large cellular elements and macromolecules from the blood into the urinary space. Damage to podocytes can disrupt the filtration barrier and lead to proteinuria and podocytopathy. We observed reduced TMEM30A expression in patients with minimal change disease and membranous nephropathy, indicating potential roles of TMEM30A in podocytopathy. To investigate the role of Tmem30a in the kidney, we generated a podocyte-specific Tmem30a knockout (KO) mouse model using the NPHS2-Cre line. Tmem30a KO mice displayed albuminuria, podocyte degeneration, mesangial cell proliferation with prominent extracellular matrix accumulation and eventual progression to focal segmental glomerulosclerosis. Our data demonstrate a critical role of Tmem30a in maintaining podocyte survival and glomerular filtration barrier integrity. Understanding the dynamic regulation of the PS distribution in the glomerulus provides a unique perspective to pinpointing the mechanism of podocyte damage and potential therapeutic targets.


Assuntos
Albuminúria/genética , Glomerulosclerose Segmentar e Focal/genética , Proteínas de Membrana/genética , Fosfatidilserinas/metabolismo , Podócitos/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout
13.
Sci China Life Sci ; 64(11): 1868-1883, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34128175

RESUMO

The endoplasmic reticulum (ER) membrane protein complex (EMC) regulates the synthesis and quality control of membrane proteins with multiple transmembrane domains. One of the membrane spanning subunits, EMC3, is a core member of the EMC complex that provides essential hydrophilic vestibule for substrate insertion. Here, we show that the EMC subunit Emc3 plays critical roles in the retinal vascular angiogenesis by regulating Norrin/Wnt signaling. Postnatal endothelial cell (EC)-specific deletion of Emc3 led to retarded retinal vascular development with a hyperpruned vascular network, the appearance of blunt-ended, aneurysm-like tip endothelial cells (ECs) with reduced numbers of filopodia and leakage of erythrocytes at the vascular front. Diminished tube formation and cell proliferation were also observed in EMC3 depleted human retinal endothelial cells (HRECs). We then discovered a critical role for EMC3 in expression of FZD4 receptor of ß-catenin signaling using RNA sequencing, real-time quantitative PCR (RT-qPCR) and luciferase reporter assay. Moreover, augmentation of Wnt activity via lithium chloride (LiCl) treatment remarkably enhanced ß-catenin signaling and cell proliferation of HRECs. Additionally, LiCl partially reversed the angiogenesis defects in Emc3-cKO mice. Our data reveal that Emc3 plays essential roles in angiogenesis through direct control of FZD4 expression and Norrin/ß-catenin signaling.


Assuntos
Retículo Endoplasmático/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Retina/metabolismo , Via de Sinalização Wnt , Animais , Proliferação de Células , Células Cultivadas , Humanos , Cloreto de Lítio/farmacologia , Camundongos , beta Catenina/metabolismo
14.
Mol Ther ; 29(9): 2854-2872, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895325

RESUMO

The processing, maturation, and secretion of insulin are under precise regulation, and dysregulation causes profound defects in glucose handling, leading to diabetes. Tmem30a is the ß subunit of the phosphatidylserine (PS) flippase, which maintains the membrane asymmetric distribution of PS. Tmem30a regulates cell survival and the localization of subcellular structures and is thus critical to the normal function of multiple physiological systems. Here, we show that conditional knockout of Tmem30a specifically in pancreatic islet ß cells leads to obesity, hyperglycemia, glucose intolerance, hyperinsulinemia, and insulin resistance in mice, due to insufficient insulin release. Moreover, we reveal that Tmem30a plays an essential role in clathrin-mediated vesicle transport between the trans Golgi network (TGN) and the plasma membrane (PM), which comprises immature secretory granule (ISG) budding at the TGN. We also find that Tmem30a deficiency impairs clathrin-mediated vesicle budding and thus blocks both insulin maturation in ISGs and the transport of glucose-sensing Glut2 to the PM. Collectively, these disruptions compromise both insulin secretion and glucose sensitivity, thus contributing to impairments in glucose-stimulated insulin secretion. Taken together, our data demonstrate an important role of Tmem30a in insulin maturation and glucose metabolic homeostasis and suggest the importance of membrane phospholipid distribution in metabolic disorders.


Assuntos
Intolerância à Glucose/genética , Transportador de Glucose Tipo 2/metabolismo , Hiperglicemia/genética , Hiperinsulinismo/genética , Resistência à Insulina/genética , Insulina/metabolismo , Proteínas de Membrana/genética , Obesidade/genética , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucose/efeitos adversos , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Obesidade/metabolismo , Fosfatidilserinas/metabolismo , Rede trans-Golgi/metabolismo
15.
Front Cell Dev Biol ; 9: 783547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118070

RESUMO

The asparaginase and isoaspartyl peptidase 1 (ASRGL1) is an L-asparaginase and beta-aspartyl peptidase enzyme that may be involved in the formation of L-aspartate, a neurotransmitter that can operate as an excitatory neurotransmitter in some brain regions. Although variants in ASRGL1 have been reported in retinitis pigmentosa (RP) patients, the in vivo functions and mechanisms of ASRGL in RP remains unknown due to the lack of suitable disease models. To explore the role of ASRGL in RP, we generated an Asrgl1 knockout mouse model (Asrgl1 KO) using the CRISPR/Cas9 technique. Asrgl1 ablation in mice led to an attenuated electroretinogram (ERG) response around 8 months. The thickness of the outer nuclei layer (ONL) started to decrease around 9 months in Asrgl1 KO mice and gradually intensified at 12 and 15 months. Immunostaining revealed thinner inner segment (IS) and thinner outer segment (OS) as well as the progressive degeneration of rod and cone cells in Asrgl1 KO mice. One hundred forty-nine transcriptional differentially expressed genes (DEGs) were found by RNA-seq in Asrgl1 KO retina. These DEGs were linked to a number of biological processes that were considerably enriched, including gastrointestinal disease and organismal injury and abnormalities. By analysis of canonical pathways, glucocorticoid receptor signaling was the most significant canonical pathway altered in Asrgl1 KO retina. Several molecules, including NFE2L2, IL-4, Foxp3, and Fos, were in the central nodes of the interaction network in Asrgl1 KO retina. In summary, our study provided a knockout mouse model for a better understanding of the molecular mechanism for ASRGL1-related RP.

16.
Genet Test Mol Biomarkers ; 24(11): 745-753, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058741

RESUMO

Purpose: Retinitis pigmentosa (RP) is an inherited and progressive degenerative retinal disease that often results in severe vision loss and blindness. However, mutations in known RP disease genes account for only 60% of RP cases, indicating that there are additional pathogenic mutations are yet to be identified. We aimed to identify the causative mutations in the eyes shut homolog (EYS) gene in a cohort of Chinese RP and rod-cone dystrophy families. Materials and Methods: Targeted next-generation sequencing was applied to identify novel mutations in these patients. Candidate variants were evaluated using bioinformatics tools. Mutations were confirmed by Sanger sequencing. Results: We identified eight heterozygous mutations in the EYS gene in the four probands, including a novel frameshift deletion mutation, c.8242_8243del (p.L2748fs); a novel insertion mutation, c.5802_5803insT (p.I1935YfsX6); a novel splicing mutation, c.1300-1G>A; two heterozygous stop-gain mutations, c.1750G>T (p.E584X) and c.8805C>A (p.Y2935X); and three novel missense mutations, c.8269G>A (p.V2757I), c.2545C>T (p.R849C) and c.7506C>A (p.S2502R). Only c.8805C>A had been reported previously in RP patients. None of these mutations were present in 1000 control individuals. Conclusions: We identified seven novel mutations in the EYS gene, expanding the mutational specra of EYS in Chinese patients with RP and rod-cone dystrophy.


Assuntos
Proteínas do Olho/genética , Retinose Pigmentar/genética , Adulto , Povo Asiático/genética , China , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Proteínas do Olho/metabolismo , Feminino , Mutação da Fase de Leitura/genética , Genes Recessivos/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Mutação de Sentido Incorreto/genética , Linhagem
17.
Biomed Res Int ; 2020: 7342817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596364

RESUMO

Phosphatidylserine flippase (P4-ATPase) transports PS from the outer to the inner leaflet of the lipid bilayer in the membrane to maintain PS asymmetry, which is important for biological activities of the cell. ATP11A is expressed in multiple tissues and plays a role in myotube formation. However, the detailed cellular function of ATP11A remains elusive. Mutation analysis revealed that I91, L308, and E897 residues in ATP8A2 are important for flippase activity. In order to investigate the roles of these corresponding amino acid residues in ATP11A protein, we assessed the expression and cellular localization of the respective ATP11A mutant proteins. ATP11A mainly localizes to the Golgi and plasma membrane when coexpressed with the ß-subunit of the complex TMEM30A. Y300F mutation causes reduced ATP11A expression, and Y300F and D913K mutations affect correct localization of the Golgi and plasma membrane. In addition, Y300F and D913K mutations also affect PS flippase activity. Our data provides insight into important residues of ATP11A.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação/fisiologia , Fosfolipídeos/metabolismo
18.
Mol Med Rep ; 22(1): 193-200, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319668

RESUMO

Retinitis pigmentosa (RP) is a group of inheritable blindness retinal diseases characterized by the death of photoreceptor cells and a gradual loss of peripheral vision. Mutations in Usher syndrome type 2 (USH2A) have been reported in RP with or without hearing loss. The present study aimed to identify causative mutations in a cohort of families with RP from China. A cohort of 62 non­syndromic families with RP and 30 sporadic cases were enrolled in this study. All affected members underwent a complete ophthalmic examination, including fundus photography, visual­field test and optical coherence tomography examination. Next­generation sequencing­targeted sequencing of 163 genes involved in inheritable retinal disorders was performed on the probands. Stringent bioinformatics data analysis was applied to identify potential candidate variants. In total, 6 novel mutations and 2 known mutations of USH2A were identified in 4 families with RP. A stop­gain mutation (c.C1731A) and a missense mutation (c.G8254A) were identified in RP family RP­2148. In another RP family, RP­2150, a known mutation (c.G802A) and a novel frameshift insertion mutation (c.12086dupA) were discovered. A novel stop­gain mutation (c.G11754A) and a missense mutation (c.G13465A) were identified in family rpz05. A novel missense mutation (c.C9328G) and a known missense mutation (c.G8232C) were also identified. These mutations were subsequently confirmed by Sanger sequencing. All 6 novel mutations affected highly conserved amino acid residues, and were absent in 1,000 ethnically matched controls. Taken together, the present study has reported on 6 novel USH2A mutations in 4 families with RP, and has expanded the mutation spectrum of USH2A in autosomal recessive RP in the Chinese population, thus providing important information for the molecular diagnosis and screening of RP.


Assuntos
Proteínas da Matriz Extracelular/genética , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Idoso , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Adulto Jovem
19.
Hum Mol Genet ; 29(10): 1624-1634, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32242237

RESUMO

Variants in interphotoreceptor matrix proteoglycans (IMPG2) have been reported in retinitis pigmentosa (RP) and vitelliform macular dystrophy (VMD) patients. However, the underlying molecular mechanisms remain elusive due to a lack of suitable disease models. We developed two independent Impg2 knockout (KO) mouse models using the CRISPR/Cas9 technique to assess the in vivo functions of Impg2 in the retina. Impg2 ablation in mice recapitulated the RP phenotypes of patients, including an attenuated electroretinogram (ERG) response and the progressive degeneration of photoreceptors. The histopathological examination of Impg2-KO mice revealed irregularly arranged rod cells and mislocalized rhodopsin protein in the inner segment at 6 months of age. In addition to the pathological changes in rod cells, cone cells were also affected in KO retinas. KO retinas exhibited progressive cone cell death and impaired cone cell elongation. Further immunoblotting analysis revealed increased levels of endoplasmic reticulum (ER) stress-related proteins, including C/EBP homologous protein (CHOP), immunoglobulin heavy-chain-binding protein (BIP) and protein disulfide isomerase (PDI), in Impg2-KO mouse retinas. Increased gliosis and apoptotic cell death were also observed in the KO retinas. As autophagy is closely associated with ER stress, we then checked whether autophagy was disturbed in Impg2-KO mouse retinas. The results showed that autophagy was impaired in KO retinas, as revealed by the increased accumulation of SQSTM1 and other proteins involved in autophagy. Our results demonstrate the essential roles of Impg2 in the retina, and this study provides novel models for mechanistic investigations and development of therapies for RP caused by IMPG2 mutations.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteoglicanas/genética , Retina/metabolismo , Degeneração Retiniana/genética , Rodopsina/genética , Animais , Autofagia/genética , Sistemas CRISPR-Cas/genética , Morte Celular/genética , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Knockout , Isomerases de Dissulfetos de Proteínas/genética , Retina/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Fator de Transcrição CHOP/genética
20.
Genet Test Mol Biomarkers ; 24(2): 92-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31999491

RESUMO

Background: Familial exudative vitreoretinopathy (FEVR) is an inheritable retinal vascular disease, which often leads to severe vision loss and blindness in children. However, reported mutations can only account for 50-60% of patients with FEVR. The purpose of this study was to identify novel frizzled class receptor 4 (FZD4) and Norrin cystine knot growth factor NDP (NDP) mutations in a cohort of Indian patients with FEVR by whole-exome sequencing. Methods: We performed data filtering and bioinformatic analyses. Results: Two novel heterozygous mutations in FZD4 gene were identified, each in two different families: c.1499_1500del [p.500_500del] and c.G296C [p.C99S]. One novel mutation in NDP in another family was identified: c.A256G [p.K86E]. All FZD4 mutations affected conserved amino acid residues and were absent in 1000 control individuals. To assess the effect of these FZD4 mutations on the biological activity of the protein, we introduced each FZD4 mutation into FZD4 cDNA by the site-directed mutagenesis techniques. A Norrin/beta-catenin pathway-based luciferase reporter assay revealed that the c.1499_1500del failed to activate the luciferase reporter; in contrast, compared with the wild-type FZD4 protein, the, c.G296C [p.C99S] mutation exhibited increased luciferase reporter activity. Conclusion: Our study found two novel FZD4 mutations, with opposite effects regarding functional expression levels in Indian patients with FEVR and expands on the mutational spectrum of FZD4 in Indian FEVR patients.


Assuntos
Proteínas do Olho/genética , Vitreorretinopatias Exsudativas Familiares/genética , Receptores Frizzled/genética , Mutação , Proteínas do Tecido Nervoso/genética , Criança , Feminino , Humanos , Índia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...